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ABSTRACT 

The current battlefield is changing rapidly.  Combat operations against irregular 

forces are set in a dispersed, non-linear battlefield.  Vast distances between small units 

such as the infantry squad, and the distances from these small elements to their 

supporting organizations, pose unique challenges. 

Casualty evacuation is an evolving challenge. The goal of casualty evacuation is 

to transport an injured Marine from the point of injury to a medical care facility.  

Increased dispersion results in longer distances from the point of injury to medical care 

facilities with a corresponding increase in the delay between the time of injury and life-

saving surgical care.  The non-linear aspects of this battlefield increase the threat to 

aircraft crews and platforms conducting casualty evacuation 

Unmanned aerial systems offer an alternative means of air casualty evacuation. 

This alternative may provide time-critical response while reducing threat to aircraft 

crews. 

The thesis determined the probability distribution of mission completion times 

and identified the most influential factors on mission success.  
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THESIS DISCLAIMER 

The reader is cautioned that the computer programs presented in this research may 

not have been exercised for all cases of interest.  While every effort has been made, 

within the time available, to ensure that the programs are free of computational and 

logical errors, they cannot be considered validated.  Any application of these programs 

without additional verification is at the risk of the user. 
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EXECUTIVE SUMMARY 

The dispersed nonlinear battlefield presents a dynamic operating environment.  

Increased dispersion between units as small as the infantry squad and their supporting 

organizations pose unique challenges, and casualty evacuation (CASEVAC) is one of 

these challenges.  The first 60 minutes after a traumatic injury is referred to as the 

“golden hour.”  The chances of survival for critically injured trauma patients depend on 

immediate surgical care.  Delivering an injured Marine to adequate surgical care within 

the golden hour is the goal of CASEVAC.  

Aerial CASEVAC, executed with manned assets, places additional lives at risk.  

Unmanned aerial systems (UASs), however, offer an alternative means of air CASEVAC.  

This alternative may provide a time-critical response, while reducing the threat to aircraft 

crews. 

This thesis provides the Marine Corps Warfighting Laboratory (MCWL) with 

analytical support for initial and further development of possible tactics, techniques, and 

procedures for unmanned CASEVAC.  This thesis is guided by two questions: 

• What is the probability distribution of mission completion time? 

• What are the most influential factors that affect mission completion time? 

This thesis uses agent-based simulation, state-of-the-art design of experiments, and 

statistical analysis to investigate these questions. 

The goal of the simulation is to quantify the effects of multiple factors in the 

successful completion of an unmanned CASEVAC mission.  The measure of 

effectiveness is the number of CASEVACs completed within the golden hour.  The 

factors include:  UAS speed, UAS quantity, UAS capacity, and the number and location 

of casualties. 

The scenario expands upon the UAS CASEVAC portion of the Enhanced 

Company Operations Limited Objective Experiment 3.3 (ECO LOE 3.3).  ECO LOE 3.3 

is a live force experiment conducted by MCWL in June 2009.  In the simulation, there are  
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three platoon locations, separated by over 50 miles.  Casualties occur between 5 and 45 

miles away from surgical care.  There is an enemy presence that is located either along 

the route of flight, near the point of injury (POI), or a combination of both. 

The Joint Test and Evaluation Model (JTEAM) is the program of choice for this 

thesis.  This farmable model provides the flexibility to capture the key factors that plague 

this environment and has the additional capability to simulate command and control 

systems.  As a fast-running model, JTEAM explores the design space through thousands 

of simulation runs.  Nearly Orthogonal Latin Hypercubes (NOLHs) and data farming 

enable analysis of a large set of possibilities. 

The conclusions are based on simulation runs with varying levels of assets, 

capacities, and UAS capabilities.  The detailed quantitative analysis of the simulation 

results reveals the number of UASs, the number of litters and airspeed required to 

respond to the simulated number, and the location of casualties within the golden hour.  

Three UASs, with two litters per UAS, are recommended.  With this allocation of assets, 

the capabilities of the current concept demonstrator, Boeing’s Unmanned Little Bird, 

appear sufficient to achieve an acceptable mission completion time. 



 xix

ACKNOWLEDGMENTS 

I would like to first thank my Lord and Savior, Jesus Christ, for the strength, 

focus, and determination to remain engaged in this long, and at times, challenging 

process.  Next, I thank my wife, Tiffany, for her continued love, support, and 

encouragement.  She was instrumental to the successful and timely completion of this 

thesis, and more importantly, my sanity. 

I would also like to thank those who worked very closely with me on this thesis.  

Dr. Gary Horne, my advisor, provided guidance and advice throughout the development 

of this thesis.  My second reader, Lieutenant Colonel Sergio Posadas, USMC, provided 

the mentorship and technical writing tool kit that helped smooth out this process.  Steve 

Upton championed the development of the JTEAM model.  Thanks Steve, for all the 

programming help and modeling advice.  Mr. Bill Hoffman, from the Marine Corps 

Warfighting Laboratory, made the trip from Quantico to attend the International Data 

Farming Workshop.  His input was invaluable in developing a realistic scenario and 

keeping my thesis relevant. 

The weekly meetings with Dr. Tom Lucas and Colonel Ed Lesnowicz, USMC 

(Ret.) helped to keep me on track and focused.  The simulation analysis techniques 

learned from Drs. Paul and Susan Sanchez were integral for the analysis of the model. 

Donna Middleton from Northrop Grumman and Lieutenant Colonel Jerry 

Pearman, USA (Ret.) provided the guidance and mentorship in Pythagoras necessary to 

model the scenario with that program. 

I would also like to thank my classmates, specifically Major Ben Marlin, USA, 

and Captain Shawn Phillips, USMC, for the sanity checks on my work. 



 xx

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1

I. UNMANNED AIR CASUALTY EVACUATION (CASEVAC) IN 
THE DISTRIBUTED ENVIRONMENT 

A. CASEVAC:  A TIME-CRITICAL MISSION 

Quickly delivering an injured Marine to adequate surgical care is the goal of 

casualty evacuation (CASEVAC).  The first 60 minutes after a traumatic injury is 

referred to as the “golden hour.”  The chances of survival for critically-injured trauma 

patients depend on immediate surgical care.  Aerial CASEVAC, executed with manned 

assets, places additional lives at risk.  Unmanned aerial systems (UASs) offer an 

alternative means of air CASEVAC.  This alternative may provide time-critical response, 

while reducing the threat to aircraft crews (Hill, Konoske, Galarneau, & Pang, 2003). 

1. The Methods of CASEVAC have Evolved 

In 1792, French surgeon Dominique Jean Larrey began removing injured soldiers 

from the battlefield on two-wheeled, horse-drawn carriages.  In World War II, short 

takeoff and landing planes, such as the Piper J–3, were used.  Helicopters, the current 

vehicle of choice for aerial CASEVAC, were used for the first time in the Vietnam War. 

The Marine Corps does not have a dedicated aerial CASEVAC platform; 

however, the Marine Air Ground Task Force (MAGTF) commander can assign 

CASEVAC missions to lifts of opportunity.  The MV–22 Osprey is the most capable 

asset at the MAGTF commander’s disposal because of its speed and high flight ceiling.  

These attributes allow the MV–22 to fly above small-arms fire and many man-portable, 

surface-to-air missile systems (Hill et al., 2003). 

Although the MV–22 is very capable, it has limitations.  One such limitation is 

the MV–22’s susceptibility to vortex ring state (VRS), which is a condition experienced 

when the MV–22 descends quickly with low forward airspeed.  While all rotary wing 

aircraft are susceptible to VRS, traditional helicopters can descend at a high rate of speed 

and flare just above the ground to arrest this descent.  VRS prevents the MV-22 from 

making fast insertions, thus limiting its utility in unsecured landing zones (Berler, 2005). 
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2. Care is Provided at Different Levels 

After being evacuated to life-saving surgical care, patients are then moved to 

advanced treatment.  Five levels, or echelons, of care are used. 

• Level I is the first echelon of care and is provided by first responders at 

the unit level. 

• Casualties are evacuated from the point of injury (POI) to level II care, 

where life-saving surgical care is provided. 

• After receiving surgical care, casualties are then moved to level III, a 

theater hospital, where more comprehensive care is provided. 

• Level IV is characterized by longer hospitalization in theater and possibly 

in the continental United States (CONUS). 

• Level V care is convalescent, restorative, and rehabilitative care, and is 

normally provided in CONUS (Schoo, 2006). 

B. CASEVAC EXECUTION REQUIRES AN ADAPTIVE APPROACH 

1. Ineffective CASEVAC can Cost Lives 

The increased dispersion between units as small as the infantry squad and their 

supporting organizations pose unique challenges, and CASEVAC is one of these 

challenges.  The patient is stabilized before transport because, unlike medical evacuation 

(MEDEVAC), emergency care may not be provided en route.  Treatment time lost en 

route, and greater distances from the POI to life-saving surgical care, creates a need for 

faster reaction and reduced travel times.  The nonlinear aspects of this battlefield pose a 

threat to the crews and platforms conducting CASEVAC as they operate over unsecured 

areas (Conway, 2008). 

Medical personnel can be placed on aerial CASEVAC platforms to provide 

treatment from the POI to level II care.  Although this addition allows for treatment en 

route, loading these assets to a lift of opportunity could consume valuable time.  This 

approach also does not mitigate the risk to manned aircrews (Hill et al., 2003). 
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2. The Use of UASs Offer an Alternative Method for Aerial CASEVAC 

The use of UASs in CASEVAC reduces the exposure of aircrews to enemy fire.  

Although not equipped to provide care en route, time is not lost configuring the aircraft 

for medical personnel and supplies.  A disadvantage of using UASs is their inability to 

autonomously react to an enemy threat without safety pilot (SP) control. 

C. RESEARCH QUESTIONS 

This thesis simulates the UAS CASEVAC portion of the Enhanced Company 

Operations Limited Objective Experiment 3.3 (ECO LOE 3.3) specifically by conducting 

a comparative, quantitative analysis of the use of UASs for the CASEVAC mission.  The 

following questions are addressed: 

• What is the probability distribution of mission completion time? 

• What are the most influential factors that affect mission completion time? 

D. METHODOLOGY 

1. Agent-Based Simulation Used to Model a Dynamic Environment 

A low-resolution, agent-based model (ABM) simulates approved scenarios for 

analysis.  The Joint Test and Evaluation Agent Model (JTEAM) is used to model UAS 

interaction in the distributed environment. 

JTEAM is a prototype agent-based simulation developed in support of the 

Netcentric Systems Test (NST) office.  This thesis is the first ever to use JTEAM.  

Pythagoras was originally developed by Northrop Grumman in support of Project Albert 

(a research project designed to evaluate nontraditional simulation techniques).  ABMs are 

useful for addressing those areas of combat omitted from many combat models, to 

include nonlinearity, intangibles, and a coevolving landscape (Bitinas, Henscheid, & 

Truong, 2003).  JTEAM and Pythagoras allow the simulation to capture critical factors of 

interest without modeling all the physical details, and allow the user to alter input 

parameters during the simulation execution. 
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2. Advanced Design of Experiments Explores Simulation Results 

The model runs thousands of simulated CASEVACs across a range of conditions 

and assumptions.  In addition, state-of-the art design of experiments and data analysis 

techniques are used to analyze the critical factors associated with the ability of an 

unmanned system to provide aerial CASEVAC.  The model is analyzed as it is replicated.  

Data farming methods are used to quantify how varying the input factors in the model 

affect the measures of effectiveness (MOEs) over the range of scenarios.  The resulting 

analysis provides insights through the exploration of different outcomes. 

E. PURPOSE AND ORGANIZATION 

1. Develop Tactics, Techniques, and Procedures (TTPs) for UASs in 
CASEVAC 

The purpose of this thesis is to conduct a simulation study, using an ABM, which 

provides insights on possible future TTPs for the use of UASs in CASEVAC.  The 

Marine Corps Warfighting Laboratory (MCWL) will conduct ECO LOE 3.3 in June 

2009, in the Mountain Warfare Training Center.  One goal is to assess the performance of 

a UAS as an alternative means of air CASEVAC. 

The proposed UAS, Boeing’s Unmanned Little Bird (ULB), will be used in ECO 

LOE 3.3.  The ULB is the concept demonstrator; however, this thesis evaluates a range of 

performance characteristics of unmanned systems for aerial CASEVAC (Marine Corps 

Warfighting Laboratory, 2008). 

2. Thesis Organization 

Chapter II provides a description of MCWL’s exercise and the ULB.  Also 

included are an overview of JTEAM, Pythagoras, and a detailed description of the 

simulation model.  Chapter III provides a discussion of the design of experiments and 

includes a description of the key factors.  Chapter IV provides a description of the 

analytical methods used to interpret the results of the simulations and an explanation of 

those results.  Chapter V completes this thesis with a discussion of insights gained from 

the analysis and recommendations for follow-on research. 
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II. UNMANNED AERIAL SYSTEM CASEVAC MODEL 

The current battlefield is changing rapidly.  This battlefield consists of combat 

operations against irregular forces set in a dispersed, nonlinear environment. The JTEAM 

model, along with the ECO LOE 3.3, provides insights into the potential benefits from 

using unmanned aerial systems for CASEVAC in this environment. 

A. THE DISTRIBUTED ENVIRONMENT PLACES ADDITIONAL 
DEMANDS ON THE COMPANY 

1. ECO are Motivated by Low Intensity Conflict 

The concept for ECO provides a basis for on-going infantry company-focused 

combat development that will allow the MAGTF to succeed against hybrid threats in a 

dispersed, nonlinear battlefield.  As our deployed forces have verified, modern conflicts 

will place increasing demands on maneuver elements below the battalion level. 

While current doctrine still regards the battalion as the lowest echelon of 

maneuver capable of sustained operations, this stance is shifting.  On today’s battlefield, 

the infantry company must be capable of collecting, analyzing, and distributing 

information; requesting, coordinating, and controlling all forms of fire support; and 

planning and executing sustainment operations.  The result of ECO could be referred to 

as a company-sized MAGTF.  Informal analysis of ECO in the area of logistics concludes 

that unmanned aerial and ground systems are a potential solution, in distributed high 

threat situations, for the delivery of critical supplies and for moving injured Marines 

(Conway, 2008). 

2. Forward Resuscitative Surgical Suite (FRSS) Provides Care 

The FRSS is set up and operated by personnel from the Surgical Company from 

the Marine Logistics Group (MLG).  The FRSS would normally be established in an 

austere forward location to enable responsive life- saving surgery.  In the early stages of 

an amphibious operation, the FRSS might be the only surgical care ashore until a more  
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robust medical treatment facility is established in the MAGTF’s Support Area.  If an 

FRSS is not available during the early stages of an amphibious operation, critically 

wounded Marines would be moved to a sea-based medical facility. 

B. REAL-WORLD UNMANNED CAPABILITIES TESTED 

 The ECO LOE 3.3 is scheduled to occur after thesis completion.  The MCWL will 

employ Boeing’s ULB as a resupply and CASEVAC concept demonstrator during the 

experiment.  ECO LOE 3.3 will take place as part of a large-scale 4th MLG exercise, 

Javelin Thrust 09 (JT-09), in the Mountain Warfare Training Center (MWTC) in June 

2009. 

1. Aerial CASEVAC Examined in ECO LOE 3.3 

The experiment will test the ability of the UAS to accomplish the CASEVAC 

mission under a variety of scenarios.  The UAS will be used to conduct two CASEVAC 

missions.  JT-09 was planned to represent a Marine Expeditionary Brigade (MEB)-sized 

MAGTF.  The 23rd Marines will provide the ground component of this exercise.  I 

Company, 3d Battalion, 23rd Marines (I Co., 3/23) will act as the exercise opposition 

force (OPFOR).  I Co., 3/23, along with selected combat service support elements from 

the 4th MLG, will also be tasked to be the experimental forces in support of the MCWL 

LOE. 

While operating as the exercise OPFOR, I Co. 3/23 will conduct two simulated 

CASEVAC missions using Boeing’s ULB as the concept demonstrator.  Injecting a 

scripted critical injury of one of the OPFOR Marines will simulate each CASEVAC 

mission.  The role of the injured Marine will be simulated with a medical dummy loaded 

onto the aircraft.  To simplify experiment control, ULB flights will be limited to takeoffs 

and landings at the Expeditionary Airfield (EAF) located at MWTC.  This will result in 

short mission legs that detract from the challenges presented in the dispersed 

environment. 
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2. The ULB Provides a Unique Opportunity for Live Force 
Experimentation 

Boeing’s ULB offers a versatile and reliable platform for conducting live 

experiments that examine the potential for a logistics UAS.  The ULB originated from a 

1960s series of light attack and observation helicopters.  Converted from the commercial 

MD530 F helicopter, the ULB could be crewed by two personnel, with seating for two 

additional personnel in the cabin.  U.S. Army Special Forces have flown this aircraft with 

four soldiers on the skids for rapid deployment. 

 

Figure 1.   Boeing’s Unmanned Little Bird (From:  Boeing, 2006) 

With a maximum speed of 134 mph, a range of 379 miles, and flight ceiling of 

7,300 ft, the ULB is well suited for use as an experimental aircraft in the context of ECO-

based live force experiments.  Its small size (23-ft length, 26.35-ft width, and 8.14-ft 

height) allows for entry into landing zones that would otherwise be impractical for larger 

aircraft.  The ability to take off with a maximum weight greater than 3,500 lbs provides 

the flexibility to deliver supplies and transport casualties (Boeing, 2009). 

The Little Bird executed its first unmanned flight in June 2006.  After takeoff, the 

ULB flew a 20-minute programmed route around the U.S. Army’s Yuma Proving Ground 

in Yuma, Arizona.  It landed within six inches of the planned recovery location.  The test 

payload was 740 lbs.  The ULB lifted off weighing 3,000 lbs and could have added an  
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additional 550 lbs (Boeing, 2006).  It has an onboard sensor suite comprised of an 

electro-optical/infrared (EO/IR) sensor and a Tactical Common Data Link (TCDL) 

communication system. 

3. The ULB System is Designed for a Fluid Environment 

The ULB can be controlled in two ways.  The flight path can be programmed 

before launch or an SP at the ground control station (GCS) can control the aircraft.  From 

the GCS, the SP can upload a new set of waypoints to the ULB or can assume manual 

control.  If data link communication is lost with the ULB, it reverts back to its 

programmed flight path.  Onboard navigation is provided by a commercial global 

positioning system (GPS).  The ULB lands via digital terrain elevation data (DTED) and 

a radar altimeter (RADALT) positioned between the skids (Potashnik, 2008). 

The GCS is Boeing’s Operational Mission Management System (OMMS).  

OMMS is comprised of two main subsystems:  the SP’s station and the TCDL 

communication system.  The SP has two laptops:  one has a dual display, which operates 

software, and the second displays TCDL information. 

The TCDL system is used to relay location, system status, and real-time video to 

the GCS.  En route adjustments are made via the TCDL.  The ULB must maintain line of 

sight communications (LOS) with the GCS to utilize the TCDL.  A radio relay system 

would extend the range of control indefinitely.  Components of the TCDL are shown in 

Figure 2:  three line replaceable units (LRUs), a 9-ft, dual-axis directional antenna, Radio 

Frequency Equipment (RFE), and data modem (Cerchie, Docker, Graham, Guthrie, & 

Hardesty, 2008). 
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Figure 2.   Ground Control Station Components (From:  Cerchie et al., 2008) 

4. Unmanned Aerial CASEVAC and Logistics Capabilities Evaluated 

 In April 2008, MCWL performed a limited technical assessment (LTA) of the 

ULB.  The LTA tested the autonomous behaviors of the aircraft to include en route 

mission updates.  Test flights included mission profiles representing both resupply and 

CASEVAC.  The LTA results validated the ability of the ULB to serve as a concept 

demonstrator.  During the two CASEVAC flights, the ULB took off, flew to the casualty, 

and landed autonomously using the RADALT.  Figure 3 shows the ULB configured with 

a rescue basket and a canister for resupply. 

 

Figure 3.   ULB configured with resupply canister and rescue basket  
(From:  Cerchie et al., 2008) 
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The time required for the ULB to descend from level flight, retrieve the casualty, 

and resume level flight was 5.3 minutes.  This leaves 54.7 minutes remaining in the 

“golden hour” to complete the CASEVAC mission.  To achieve mission success, the first 

responder must render aid and inform the company leadership of an evacuation need; the 

company must request a CASEVAC from the Direct Air Support Center (DASC); and the 

UAS must then fly to the POI and back to the FRSS within the remaining 54.7 minutes. 

In the resupply role, the ULB delivered a 600-lb load, using the external cargo 

hook, approximately 37 miles in 25 knot winds, with limited inputs by the SP.  Figure 4 

shows the ULB configured with sling-loaded cargo underneath the aircraft. 

 

Figure 4.   ULB with external hook sling load (From:  Cerchie et al., 2008) 

Smaller loads can be placed in converted napalm canisters or in the rescue basket 

(Potashnik, 2008).  Figure 5 shows a ULB with two canisters and a sling load. 
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Figure 5.   ULB configuration with sling load and two canisters (From:  Cerchie et al., 2008) 

5. What Could a Future Logistics UAS Structure Look Like? 

To provide a robust alternative to unmanned ground and air logistics support, 

each Marine Expeditionary Force (MEF) Air Combat Element (ACE) might include one 

Marine Unmanned Logistics Helicopter Squadron (HULM) as part of each Marine 

Aviation Group.  The HULM would consist of 10 to 12 aircraft.  During combat 

operations, this squadron could form detachments consisting of two or more aircraft, two 

ground control stations, and 30 operators and crew support (MCWL, 2008). 

C. JTEAM MODELS COMPLEX ENVIRONMENTS 

1. What is JTEAM? 

JTEAM is a farmable ABM; discrete-event and three-dimensional.  Time is 

measured in seconds and space in meters.  Both values are represented by floating point 

numbers, which allow the operating area to be scaled to any size.  Although the default 

units of time and distance are seconds and meters, respectively, these can be tailored as 

long as the units remain consistent.  Terrain is not a feature of the JTEAM model 

(JTEAM Version 1.0 User Manual, 2008).   
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JTEAM is written in Java and uses the MASON ABM for its underlying 

infrastructure.  Additional functionality is provided through other supporting programs.  

The George Mason University Evolutionary Computation Laboratory developed the 

MASON ABM as the foundation for larger simulations. 

2. Why was JTEAM Chosen? 

The dispersed nonlinear battlefield presents a dynamic operating environment.  

The JTEAM model provides the flexibility to capture the key factors that plague this 

environment.  Other ABMs can simulate the interactions of terrain, weather, friendly 

forces, and enemy combatants, and their effects on mission accomplishment. 

JTEAM has the ability to model these factors and has the additional capability to 

simulate command and control systems.  Like traditional models, JTEAM can simulate 

the reliability of communications, but unlike those models, JTEAM can use those 

communications to trigger events. 

Like traditional models, JTEAM is farmable; input parameters associated with 

agents can be varied to enhance computational experiments.  JTEAM offers flexibility; 

users can develop software components to extend the functionality of the basic 

framework.  JTEAM also allows users to construct agents that are specific to the domain.  

As a fast-running model, JTEAM explores the design space through thousands of 

simulation runs. 

3. JTEAM Agents 

Decider, Effector, and Perceiver components form the basic structure and 

functionality for each agent.  Effectors, Perceivers, and Deciders have associated 

farmable parameters.  Currently, there is only one Perceiver implemented, a 

SimpleThreatPerceiver.  This uses an observation and a low level Percept to determine 

whether an observed Agent is a threat.  Action, effector, communications, damage, and 

perception handling mechanisms characterize the structure of the component.  The agent 

structure also includes target and observable classes. 
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a. Effectors Provide a Means to Observe the Environment 

Through sensing, movement or shooting an agent can influence the 

surrounding environment.  Agents can only take actions provided by the assigned set of 

Effectors.  In addition to actions, Effectors can also provide Percepts to an agent. 

b. Perceivers Determine what an Agent “Knows” 

Perceivers create new Percepts.  Percepts are data structures only; they are 

not farmable.  These attributes are used to model operator overload or memory.  They are 

used by the Deciders to implement action.  Knowledge is passed from one agent to 

another through messages with imbedded Percepts. 

c. Deciders Implement Courses of Action 

Deciders use Percepts to implement courses of action and direct Effectors 

to execute those actions.  Although an agent can possess multiple Effectors and 

Perceivers, agents are currently limited to one Decider.  Deciders can, however, differ 

from one agent type to another (JTEAM Version 1.0 User Manual, 2008).  A more in-

depth coverage of Effectors, Percepts, and Deciders can be found in the JTEAM Version 

1.0 User Manual. 

4. Functionality Programmed in JTEAM  

A casualty event is generated based on the uniform distribution; the default is the 

interval (0, simulationStopTime).  The user can specify a different interval to model 

different casualty generation scenarios and can turn casualties on and off, where a 0 

indicates that a casualty will not be in that particular replication, and a 1 says it will 

occur. 

The CASEVAC message originates from the first responder (corpsman).  This 

request also includes the location of the casualty, which gets passed to the DASC and, 

subsequently, the UAS.  The DASC forwards a CASEVAC mission request message, 

which tasks the UAS. 
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A mission tasker in the DASC allows the UAS to be assignment based on priority.  

A mission list is held at the DASC.  A UAS is available for retasking after a mission is 

completed.   

The Casualty Evacuation Mission Tasker is a Java class that serves as the mission 

tasker in the DASC.  It has a resource database that identifies which agents can serve as 

carriers, each capacity, assignment distance (how far away they can be to assign the 

agent), and pickup radius.  It also has decision time, decision time offset, and update 

parameters that account for decision-making delays. 

Agent Carriers are comprised of capacity and pickup radius.  The UAS will only 

retrieve casualties within the pickup radius when it arrives at the casualty location. 

Evaluate mission is a Java method that causes the Casualty Evacuation Mission 

Tasker to cycle through open requests and assign priority.  Other requests can be added to 

the assigned mission if those other requests are within pickup radius of the UAS. This 

functionality allows the UAS to retrieve casualties within the pickup radius when 

CASEVAC requests are received while the UAS is en route to a casualty location.  No  

en route retasking is built into this model. 

The route planner determines how an agent moves from one location to another 

using altitude and an approach distance, which is the distance from the start/end point 

where the UAS starts ascent/descent. 

D. THE UAS CASEVAC MODEL HAS IMMEDIATE APPLICATION 

 The CASEVAC model developed in JTEAM expands on the ULB’s 

experimentation in ECO LOE 3.3 and provides MCWL with insights into its performance 

in real-world scenarios.  The model will also determine the critical factors that influence 

CASEVAC mission success. 

1. Basic Assumptions for CASEVAC Model 

This simulation has a specific focus:  To provide TTPs in the implementation of 

UAS CASEVAC.  The assumptions include: 
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• All casualties are properly stabilized and triaged before transport. 

• Patient status does not degrade during the evacuation flight. 

• Surgical care is collocated with the ULB launch and recovery site. 

• All radio communications are reliable. 

2. Agent Descriptions 

Five agent types are used in this simulation:  the casualty, the UAS, the DASC, 

the surgical care facility, and the threat. 

• The UAS agents used in the model were constructed with location, speed, 

survivability, capacity, and route characteristics. 

o CASEVAC—When casualty notification is received, the UAS flies 

to the location of the casualty, retrieves the casualty, and then 

moves to the drop-off location. 

• In the models used for this thesis, the surgical treatment facility agent 

represents the location and functionality of an FRSS. 

• The DASC receives and processes all CASEVAC requests. 

• The enemy combatants are given a location, sensor range, probability of 

detection, and probability of kill characteristics. 

• Casualty agents are characterized by instances and location. 
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III. DATA FARMING IS CRITICAL FOR EXPERIMENTAL 
DESIGN 

This thesis used data farming to provide insights that enhance the potential 

effectiveness of unmanned aerial CASEVAC.  Data farming involves running a 

simulation model many times, while simultaneously varying input parameters.  The 

resulting output is analyzed to gain an understanding over the range of possible 

outcomes.  State-of-the-art experimental design is used to explore the problem space 

through the use of Nearly Orthogonal Latin Hypercubes (NOLHs).  Experimental design 

includes the selection of factors and MOEs. 

A. THE GOLDEN HOUR MEASURES EFFECTIVENESS 

An aerial CASEVAC mission is considered successful when the casualties are 

safely delivered to life-saving surgical care within an hour.  The proportion of missions 

that complete within the golden hour is the MOE used in this thesis. 

B. EXPERIMENTAL FACTORS DRIVE THE SCENARIO 

The conditions of the distributed environment influence the choice of 

experimental factors.  These factors are grouped into four categories:  situational, aircraft 

characteristics, mission process times, and enemy capabilities.  Aircraft characteristics 

and mission process times are controllable factors.  Situational and enemy capabilities are 

uncontrollable by the decision maker.  Table 1 summarizes the input parameters and 

ranges used in the experiment.   



 18

 

Table 1.   Variable factors in the experimental design.  Blue: situational factors, Green: 
aircraft characteristic factors, Yellow: mission process time factors, and Gray: 

enemy capability factors.  [Best viewed in color.] 

1. Situational Factors Set the Stage 

These factors model the agents that require evacuation. 

• Casualty Location:  Three platoon locations vary between 8,045m 

(5 miles) and 72,405m (45 miles) from the forward operating base 

(FOB).  Any casualty inside of 5 miles is ground evacuated. 

• Number of Casualties:  This is the number of casualties sustained 

by the company.  These casualties require evacuation. 

2. Aircraft Characteristics Determine Performance 

These factors simulate current and future capabilities of unmanned systems. 

• Number of Assets:  The number of UASs is varied to evaluate the 

impact of more assets. 

• Maximum Speed:  This is the maximum airspeed of the UAS. 

• Litters:  The number of rescue litters on each UAS. 

• Altitude:  This is the flight altitude of the UAS. 

Factor Value Range Explanation 

Casualties 1…18 The number of casualties sustained 
Casualty Location(m) 8045…72405 The distance of the casualty from surgical care 

UASs 1...4 The number of UASs available 
Speed (m/s) 46.3...115.7 Airspeed (meters per second) 

Litters 1...6 The number of rescue litters that are carried by each UAS 
Altitude (m) 304.8…1524 The cruise altitude of the UAS 

Load (s) 300...420 Time for UAS to descend, land, and climb to level flight 
Enemy Sensor Range (m) 0…4828 Sensor range of the enemy 

Enemy Threat Level 0...3  0=No threat; 1= Route threat; 2= Area threat; 3= Both route and area
Probability of Kill 0.005…0.03 The probability that the enemy shoots down a UAS 
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3. Mission Process Times Model Delays 

These factors model the time delays associated with information flow and 

decision-making.  The only key factor is load time.  The others are modeled as time 

delays within the simulation, which are listed below. 

a. Load 

The time required for the UAS to descend from level flight, land, and 

resume level flight.  In the JTEAM model, the UAS descends and climbs at its cruise 

airspeed.  This delay is a technique to artificially model the difference in descent and 

climb rates of each UAS.  The load times are based on the results of the limited technical 

assessment performed on the ULB in 2008. 

• Corpsman:  The time required for the first responder to provide 

care, determine the needs for evacuation, and pass that information 

up the chain of command.  This ranged from three to six minutes. 

• Company:  The time required for company leadership to receive, 

process, and request a CASEVAC mission.  This delay ranged 

from 10–15 minutes. 

• DASC:  The time required for the DASC to process and assign an 

asset to the CASEVAC mission, which ranged from 6–12 minutes. 

• Unload:  The time required to unload the casualty upon reaching 

surgical care.  The unload time was set at half the load time. 

4. Enemy Composition is Uncontrollable 

These factors account for the uncertainty associated with predicting enemy 

capabilities and ensure that conclusions are based upon a broad exploration of the enemy 

threat.  Enemy presence is a categorical variable with four levels.  These levels indicate 

where the enemy is located:  0 indicates there is no threat present, 1 indicates there an 

enemy presence along the route of flight; 2 indicates an enemy presence near the POI; 

and 3 indicates a threat along the route of flight and in close proximity to the POI. 
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• Sensor Range refers to the enemy’s ability to acquire and track a 

helicopter-sized target during the day with the naked eye. 

• Probability of Kill is the probability that the enemy kills a UAS. 

5. Scenarios Model Threats 

The scenario resembles the environment of ECO LOE 3.3.  Three platoon 

locations are separated by over 50 miles.  The FOB is centrally located with UAS support 

and surgical care.  In the base case, there is no threat.  This represents a casualty-causing 

event with a fleeing threat.  Three different threat cases are used.  

• High Threat:  The high threat case models a casualty-causing 

event in which the threat is located in close proximity to the POI 

and along the UAS’s flight route. 

• Area Threat:  The threat is near the POI. 

• Route Threat:  The threat, in this case, is located along the flight 

route. 

Although enemy parameters are varied throughout the development of the model, 

sensor range and P_k are fixed for the final analysis.  The sensor range is set at 4000m 

for route agents and 500 meters for area agents.  The P_k is set at 0.01.  

C. NOLH FOCUSES EFFORT 

NOLHs are a space-filling experimental design technique developed in 2002 by 

COL Thomas Cioppa, United States Army, at the Naval Postgraduate School (NPS).  

This technique allows for the exploration of a large number of input parameters in an 

efficient number of runs, while maintaining nearly orthogonal design columns (Cioppa & 

Lucas, 2007, p.45). 

Using a full-factorial approach, a design of ten factors at two levels requires over 

30,000 runs (1,024 design points x 30 reps = 30,720 total runs).  An NOLH allows for the 

exploration of the same design space with nearly 1,000 runs (33 design points x 30 reps = 

990 total runs) and the factors are more extensively varied.  A crossed design is then 
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applied, UAS parameters are crossed with threat categories, creating a 4x33 table and 

3960 (4x990) runs.  Figure 6 shows the NOLH design spreadsheet, Figure 7 shows the 

Scatterplot matrix of the experimental factors, and Figure 8 shows the correlation matrix. 
 

Figure 6.   NOLH Design Spreadsheet 
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Figure 7.   Scatterplot Matrix 
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The near orthogonal nature of the Latin Hypercubes ensures that the experimental 

factors are not correlated.  Figure 8 shows the negligible correlation between factors. 

 

Figure 8.   Factor Correlation Matrix 
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IV. DATA ANALYSIS PROVIDES INSIGHTS 

The JTEAM simulation is run on the computer cluster at NPS using the problem 

definition, scenario, and MOEs explained in previous chapters.  The generated output is 

then processed into a useable format.  An exhaustive process of statistical analysis is 

applied after post-processing to gain insights on unmanned CASEVAC.  For this 

simulated scenario, this analysis is accomplished with JMP 7.0 Statistical Discovery 

Software and focuses on the research questions outlined in the first chapter: 

• What is the probability distribution of mission completion time? 

• What are the most influential factors that affect mission completion time? 

A. DATA PROCESSING IS THE FIRST STEP IN ANALYSIS 

After an experiment is complete, the NPS cluster produces output in comma 

separated value (CSV) text files.  These CSV files contain information that ranges from 

the design of experiments to MOEs, which include the time of the casualty, the time of 

the CASEVAC request, and the departure and return times for the UAS.  Using JMP, the 

multiple CSV files are consolidated into one manageable table. 

An iterative process is applied to calculate mean completion time.  During the 

JTEAM simulation, each design point is replicated 30 times.  A CASEVAC completion 

time is attached to each replication.  The mean of the replications is recorded for each 

design point. 

Successful CASEVAC missions are completed within 60 minutes.  The percent 

complete is calculated by dividing the number of successful CASEVAC drop offs by the 

total number of CASEVAC requests. 

A distribution of the mean completion times is provided in Figure 9.  The 

summary includes the distribution data and 95% confidence intervals.  Based on the 

distribution of Mean Completion Times (MCT), the average CASEVAC mission is 

completed in 57.64 minutes. 
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Figure 9.   MCT Distribution 

1. Success Determined 

CASEVAC mission success is determined using 3960 simulation runs.  Of these 

runs, 3585 were completed.  The remaining 375 runs represent missions that resulted in 

all UASs being shot down by the enemy threat.  Table 2 shows the mean MCTs, number 

of runs within each MCT range, and the corresponding completion percentage.  

MCT (minutes) Number of Runs Percent Complete 
< 60 2554 64.5 
< 70 467 11.8 
< 80 213 5.38 
< 90 114 2.88 
< 100 73 1.84 
> 100 164 4.14 

Table 2.   CASEVAC Mission completion percentages 

With roughly 9.45% of the simulation runs resulting in UASs being shot down 

before CASEVACs were completed, this analysis focuses on the remaining 90.55% of 

runs that are completed to determine keys to success. 
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B. FACTORS IMPORTANCE DETERMINED 

Performance factors are evaluated to determine their effect on mission success.  

Their influence was determined using regression analysis and partition trees.  Regression 

analysis is a statistical technique used to investigate and determine the relationship 

between variables.  Stepwise regression is used because evaluating all possible 

regressions can be burdensome computationally and to prevent over fitting. 

1. Stepwise Regression Evaluates a Subset of the Model 

Stepwise regression evaluates a subset of the model by adding and deleting 

regressors one at a time.  This procedure requires two cutoff values that measure 

significance.  The first value is referred to as F-in and the second F-out.  The first 

regressor is chosen by evaluating significance.  The regressor with largest F statistic 

value is considered for the stepwise regression model only if its F statistic exceeds the F-

in.  As another regressor is added, the previously selected regressors are reevaluated.  

This reevaluation determines if the relative value added has been affected by the most 

recent addition.  Previously added regressor’s are removed if their partial F statistic value 

is less than F-out (Montgomery, Peck, & Vinning, 2006). 

The stepwise regression model evaluates main effects and two-way interactions of 

the 10 key factors on MCT overall excursions.  A 0.1 level of significance is used (F-in 

and F-out are set at 0.1) to develop this model.  The results identified four influential 

main effects and four two-way interactions.  The significant main effects are:  Casualty 

Location, Maximum Speed, Number of UASs, and Number of Casualties.  The 

significant two-way interactions are:  Number of UASs and Enemy Category, Maximum 

Speed and Casualty Location, Load Time and Altitude, and Number of UASs and 

Number of Casualties. 
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The model achieved an R-Squared of 0.90, which means 90% of the variability of 

the mean mission completion time is explained by the most influential factors.  Figure 10 

shows the regression model.  The actual versus predicted plot indicates how closely the 

model explains mean completion time.  This plot is determined by comparing the 

observations to the diagonal line.  The dashed blue line indicates the overall mean 

completion time. 

  

Figure 10.   Actual by Predicted MCT and Summary of Fit 
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The low p-value for the F statistic in the Analysis of Variance table, as seen in 

Figure 11, indicates the high significance of the model. 

 

Figure 11.   Analysis of Variance Table shows Significance 

The relative influence of each factor is determined by t-Ratio.  The higher the 

absolute value of the ratio indicates more relative influence on the MOE.  Figure 12 lists 

the factors in order of significance (t-Ratio).  As shown, the t-Ratio for Casualty Location 

(CasLoc) is 23.26.  This is the highest of any factor, which means that CasLoc is the most 

significant factor in the determination of MCT.  This value is also positively correlated, 

which means when CasLoc is increased, the MCT increases as well.  Maximum Speed 

(maxSpeed) is the next most significant factor with a t-Ratio of –11.42 and is negatively 

correlated.  As maxSpeed increases, MCT decreases. 

 

Figure 12.   Sorted Parameter Estimates.  The t Ratio column shows the relative influence on 
the MCT 
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2. Partition Trees Show Relative Importance 

Partition trees recursively split data according to a relationship between the X 

(factor) and Y (response) values.  It finds a set of groupings of X values that best predict a 

Y value.  The partition tree does this by exhaustively searching all possible groupings.  

Splits of the data are done recursively, forming a tree of decision rules until the desired fit 

is reached.  A partition tree created on data from 3960 JTEAM runs on all the factors for 

the mean MCT MOE is shown in Figure 13.  The partition tree achieves an R-squared of 

0.81. 

 

Figure 13.   Partition Tree split on data for Mean MCT 

The first split is on CasLoc, which was also the most influential factor identified 

by the regression analysis.  The partition tree shows the split at a distance of 36.2 miles 

from the FOB.  Casualties that occur inside of 36.2 miles are delivered to surgical care, 

on average, 26 minutes sooner than those that occur at distances greater than 36.2 miles. 

The second split is also on CasLoc.  When casualties occur less than 16.2 miles 

away from the FOB, the mean MCT is slightly over 43 minutes.  However, when 

casualties are over 16.2 miles away from the FOB but less than 36.2 miles, the mean 

MCT increases to over 56 minutes. 
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The last four splits alternate on the number of UASs (numUAS) and the number of 

casualties (numCas).  The best mean MCTs are achieved when the casualty location is 

less than 16.2 miles from the FOB and there are at least three UASs. 

C. CONTROLLABLE FACTORS ARE EVALUATED 

The results of the linear regression and partition tree analysis outlined factors that 

have significant influence on mission completion time.  Casualty location is the most 

influential factor, but is uncontrollable; as is the number of casualties.  The most 

significant controllable factors are maximum airspeed and the number of UASs.  The 

number of litters is also important to determine the configuration of each UAS.  A 

detailed analysis is conducted to determine the effects of these factors on MCT and 

mission success.   

1. Maximum Speed Plays Important Role 

The airspeed of the UAS is the most significant controllable factor.  Although a 

regression cannot be fit to the interaction of MCT and maxSpeed, Figure 14 shows there 

is a general trend:  MCT decreases when speed increases. 

 

Figure 14.   MCT versus Airspeed 



 32

There is a trend when maxSpeed is plotted against MCT.  Figure 15 shows  

this interaction. 

 

Figure 15.   Contour Plot of CasLoc versus maxSpeed 

 

In the contour plot, the MCTs in red, orange, and yellow are acceptable.  As 

depicted, there is a trend with required airspeed and distance from surgical care.  A group 

of replications, indicated by a green region within the yellow, do not follow this trend.  

Simulation runs characterized by 14 casualties cause this anomaly.  The large number of 

casualties causes the longer MCT, not the distance from surgical care. 

The nature of these plots is that a large amount of the variability in the prediction 

formula is due to the experimental design.  Although the model generally predicts the 

simulation output well, there is a lot of volatility in a two-way slice of the data due to the 

way parameters are varied in the NOLH.  For example, maxSpeed was varied 

simultaneously with other factors in an exploratory fashion, so not all possible 

combinations are observed.  It is possible that a sudden upturn in the MOE is due to 

another parameter that was varied simultaneously. 
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2. The Number of UASs Examined 

This analysis compares the performance of the number of UASs across the range 

of simulation runs.  The MCT for each is shown in Figure 16. 

 

Figure 16.   MCT versus the Number of UASs 

The plot shows the MCTs of the simulation runs with the different number of 

UASs.  The blue line connects the means of the different factor levels.  The red line 

depicts the golden hour.  CASEVACs must be completed within this time to be classified 

successful.  The MCT decreases as the number of UASs is increased.  MCT decreases 

noticeably when the number of UASs is increased from one to two.  Another significant 

decrease in MCT is observed when the number of UASs is increased to three.  No 

significant difference in MCT is noted when UASs are increased to four.  Figure 17 

shows the comparison of the different means. 
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Figure 17.   Mean Comparisons for numUAS 

This comparison shows that there is a significant difference between the mean 

times for one, two, and three UASs.  The high p-value indicates no significant difference 

between the mean times of three and four UASs. 

3. The Number of Litters Analyzed 

Although the number of rescue litters is not significant in the determination of 

MCT, the analysis of the combined effect of the number of litters and the number of 

UASs is the necessary first step to determine allocation and configuration requirements.  

Figure 18 shows the interaction of the number of litters and number of UASs and their 

effect on MCT.  As the number of litters is increased, the MCT decreases.  



 35

 

Figure 18.   MCT versus Number of Litters within Number of UASs 

This interaction is also depicted in the contour plot in Figure 19.  
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Figure 19.   numUAS versus Litters 

In the contour plot, red, orange, and yellow depict acceptable MCTs.  Large 

distances (greater than 40 miles) between casualties and care locations cause the blue and 

green areas.  In order to achieve a 60-minute or less MCT, at least three UASs must be 

available.   

4. Altitude Plays a Role in Mission Success 

The last aircraft characteristic is altitude.  As seen in Figure 20, when UAS 

altitude is plotted against MCT no trend is noticed. 
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Figure 20.   MCT versus UAS altitude 

Because acceptable MCTs are achieved across the range of altitudes, no altitude is 

more efficient.  This is also the case with the interaction of UAS altitude and maxSpeed.  

Figure 21 shows how this interaction improves the survivability of the UAS. 

 

 

Figure 21.   Contour Plot of UAS altitude versus maxSpeed and their relationship  
to Survivability 
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Over 80%, shown in blue, of the completed flights survive throughout the range 

of altitudes, regardless of airspeed.  The low percentages of success, depicted by red and 

orange.  These percentages are caused by simulation runs with high numbers of casualties 

and low numbers of UASs.   
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V. UAS CASEVAC WITHIN THE GOLDEN HOUR IS FEASIBLE 

The purpose of this thesis is to determine the probability distribution of mission 

completion times and to identify the most influential factors on mission success, for this 

scenario.  The modeled scenario is derived from a planned MCWL experiment and the 

analysis provides insights into the development of future TTPs for unmanned CASEVAC 

in the distributed environment.  In addition, this simulation serves as the foundation for 

future unmanned CASEVAC research. 

A. UAS REQUIREMENTS DETERMINED 

Regression analysis and partition trees are used to determine the most influential 

factors that affect CASEVAC MCT.  The most significant factor that affects MCT is the 

casualty location.  Unfortunately, this factor is uncontrollable.  The most influential 

controllable factors are the maximum speed of the UAS and the number of UASs 

available.  The configuration of each UAS was also determined by analyzing the number 

of litters on board.  Although the flight altitude of the UAS is controllable, no significant 

decrease in MCT is achieved by varying this factor. 

1. Number of UASs 

In the simulation, the number of UASs is varied between one and four.  MCT was 

used to determine the number of UASs necessary for mission success.  When one UAS is 

used, the MCT is 69. 6 minutes.  MCT decreases to 59.6 minutes when an additional UAS 

is added.  When three UASs are available, the MCT drops to 53.2 minutes.  There is no 

significant difference between the MCT of three and four UASs (differs by less than 1 

minute).  Although the MCT achieved by two UASs satisfies the golden hour 

requirement, three UASs provide a significant decrease in MCT.  This decrease could be 

linked to the number of platoons that experience casualties; however, this thesis does not 

consider force composition. 
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2. Number of Litters per UAS 

The number of litters that each UAS carried varied between one and six.  As with 

the number of UASs, MCT is used to determine which provides the fastest recovery time.  

The number of litters necessary to achieve the golden hour requirement varies as the 

number of UASs is changed.  When one UAS is available, six litters are needed.  As the 

number of UASs is increased to two, the required number of litters goes down to four. 

When three UASs are available, MCTs within the golden hour are observed for across the 

range of all possible numbers of litters.     

3. Airspeed Required is Based on the Number of UASs 

UAS airspeed was varied from 90-225 kts.  MCT is used to determine 

effectiveness.  The airspeed required to achieve an acceptable MCT varies with the 

number of UASs and the number and location of casualties.  As the number of UASs are 

increased, the necessary airspeed decreases. 

a. One UAS 

An airspeed of 150 kts is required when casualties are 15 miles away from 

care and 185 kts when 30 miles away.  No cases are observed with one UAS achieving 

the MCT requirement when casualties are farther than 30 miles from surgical care. 

With up to seven casualties, 160 kts is required to achieve an acceptable 

MCT.  If there are eight casualties, the UAS must fly at 185 kts.  In no case does one 

UAS retrieve more than eight casualties within the golden hour requirement. 

b. Two UASs 

Flying at 90 kts enables two UASs to respond to casualties that are 20 

miles away.  Increasing the airspeed to 190 kts extends the range to 27 miles.  Two UASs 

are inadequate for casualties greater than 30 miles away. 

To respond to 12 casualties, these UAS must fly at 115 kts.  If the number 

of casualties grows to 18, then the UASs must be able to fly at 125 kts. 
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c. Three UASs 

Most of the observed MCTs across the range of airspeeds meet the golden 

hour requirement.  The exception occurs when the distance to casualties is 40 miles.  At 

this distance, UAS airspeed must be greater than 160 kts. 

The observed MCTs for the number of casualties meet the golden hour 

requirement as well.  The modeled design points show success while responding to 5 

casualties at 105 kts and 15 casualties at 215 kts. 

d. Four UASs 

No significant difference between three and four UASs was observed. 

4. UAS Recommendations 

The detailed quantitative analysis of the simulation results reveals requirements 

for the number of UASs, the number of litters, and the airspeed required to respond to the 

simulated number and location of casualties within the golden hour.  Based on initial 

results, three UASs with two litters per UAS are recommended.  With this allocation of 

assets, the capabilities of the current concept demonstrator, Boeing’s ULB, appear 

sufficient to achieve an acceptable MCT. 

B. FOLLOW-ON RESEARCH 

The insights from this thesis are based on the modeled scenario.  The analysis 

focuses on successful CASEVAC missions.  Future analysis should incorporate the affect 

of enemy category on the total number of casualties that are delivered to surgical care.  

Further analysis should also include the findings of ECO LOE 3.3 and in corporate an 

updated scenario.   

This scenario should include more detail surrounding UAS flight operations.  The 

maintenance cycle, usage rates, and ability to be re-tasked from logistic missions to 

CASEVACs are of interest.  Opportunism, allowing the UAS to retrieve more casualties 

than were requested, should be modeled (casualties occurred while the UAS was en route 

that were not included in the request).   
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The following are possible follow-on research stemming from this thesis: 

• Model unmanned aerial CASEVAC in conjunction with ground 

evacuation. 

• Compare the performance of UAS CASEVAC with that of the MV–22 

Osprey, based on mission performance, maintenance cycle, and logistic 

requirements. 
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